Hadoop3教程(十六):MapReduce中的OutputFormat
- 人工智能
- 2025-08-16 11:15:02

文章目录 (105)OutputFormat概述(106)自定义OutputFormat案例需求分析(107/108)自定义OutputFormat案例实现自定义Mapper自定义Reducer自定义OutputFormatDriver 参考文献 (105)OutputFormat概述
我们之前讲过了Map阶段的InputFormat,对应的,Reduce阶段也有自己的OutputFormat。
Reducer在执行完reduce()之后,接下来就会通过OutputFormat来将处理结果输出至外界环境。
Hadoop里默认使用的是TextOutputFormat,即将reduce()的处理结果,按行输出到文件。
而OutputFormat是MapReduce输出的基类,所有实现了MR输出的程序,都必须实现OutputFormat接口。
OutputFormat有几种官方自带的实现类(具体功能就不展开了):
NullOutputFormatFileOutputFormat MapFileOutputFormatSequenceFileOutputFormatTextOutputFormat(默认) FilterOutputFormat LazyOutputFormat DBOutputFormatOutputFormat类的核心方法:public abstract RecordWriter<K,V> getRecordWriter(...)
最终结果怎么写,以什么形式写,写到哪儿,等等这些,都是在getRecordWriter()里控制的。
当然,这些自带的实现类在日常的生产中肯定是不足以满足各种情况的,所以多数情况下,我们会实现自定义的OutputFormat类。
自定义OutputFormat实现类需要:
继承FileOutputFormat;改写RecordWriter,具体改写输出数据的方法write() (106)自定义OutputFormat案例需求分析需求:输入是一个日志文件,即log.txt,里面是罗列了一些访问过的网站,现在需要把其中包含atguigu的网站输出到a.log,不包含atguigu的网站输出到b.log。
输入数据形如:
http:// .baidu http:// .atguibu ...我们需要自定义一个OutputFormat类,即创建一个类LogRecordWriter继承RecordWriter,然后创建两个文件输出流,一个是atguiguOut,一个是otherOut。如果输入数据包含atguigu,就输出到atguiguOut,反之则输出到otherOut流。
最后还需要在驱动类里注册一下:
job.setOutputFormatClass(LogOutputFormat.class);附注:
其实这个需求从直观上来讲,是可以通过分区来实现类似功能的,但是很遗憾,分区的话无法控制输出文件的名字,所以没法严格符合需求。
(107/108)自定义OutputFormat案例实现这里直接复制了教程里的代码,来介绍一下,如何针对上一小节提出的需求,自定义OutputFormat。
自定义Mapper首先需要创建一个自定义的Mapper类,如class LogMapper extends Mapper<LongWritable, Text, Text, NullWritable>
package com.atguigu.mapreduce.outputformat; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; import java.io.IOException; public class LogMapper extends Mapper<LongWritable, Text,Text, NullWritable> { @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { //不做任何处理,直接写出一行log数据 context.write(value,NullWritable.get()); } } 自定义Reducer然后新建一个自定义Reducer类:
package com.atguigu.mapreduce.outputformat; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Reducer; import java.io.IOException; public class LogReducer extends Reducer<Text, NullWritable,Text, NullWritable> { @Override protected void reduce(Text key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException { // 防止有相同的数据,迭代写出 for (NullWritable value : values) { context.write(key,NullWritable.get()); } } } 自定义OutputFormat这里是最重要的一步,就是自定义一个OutputFormat类,继承RecordWriter:
创建两个文件的输出流:atguiguOut、otherOut;如果输入数据中含有atguigu,则输出至atguiguOut,反之则输出到otherOut;首先自定义OutputFormat类,重写RecordWriter方法,将我们自定义的LogRecordWriter放进去。
package com.atguigu.mapreduce.outputformat; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.RecordWriter; import org.apache.hadoop.mapreduce.TaskAttemptContext; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import java.io.IOException; public class LogOutputFormat extends FileOutputFormat<Text, NullWritable> { @Override public RecordWriter<Text, NullWritable> getRecordWriter(TaskAttemptContext job) throws IOException, InterruptedException { //创建一个自定义的RecordWriter返回 LogRecordWriter logRecordWriter = new LogRecordWriter(job); return logRecordWriter; } }然后编写LogRecordWriter类,:
package com.atguigu.mapreduce.outputformat; import org.apache.hadoop.fs.FSDataOutputStream; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IOUtils; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.RecordWriter; import org.apache.hadoop.mapreduce.TaskAttemptContext; import java.io.IOException; public class LogRecordWriter extends RecordWriter<Text, NullWritable> { private FSDataOutputStream atguiguOut; private FSDataOutputStream otherOut; public LogRecordWriter(TaskAttemptContext job) { try { //获取文件系统对象 FileSystem fs = FileSystem.get(job.getConfiguration()); //用文件系统对象创建两个输出流对应不同的目录 atguiguOut = fs.create(new Path("d:/hadoop/atguigu.log")); otherOut = fs.create(new Path("d:/hadoop/other.log")); } catch (IOException e) { e.printStackTrace(); } } @Override public void write(Text key, NullWritable value) throws IOException, InterruptedException { String log = key.toString(); //根据一行的log数据是否包含atguigu,判断两条输出流输出的内容 if (log.contains("atguigu")) { atguiguOut.writeBytes(log + "\n"); } else { otherOut.writeBytes(log + "\n"); } } @Override public void close(TaskAttemptContext context) throws IOException, InterruptedException { //关流 IOUtils.closeStream(atguiguOut); IOUtils.closeStream(otherOut); } } Driver最后编写LogDriver驱动类,把我们前面自定义的的类统统在驱动类里注册上:
package com.atguigu.mapreduce.outputformat; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import java.io.IOException; public class LogDriver { public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException { Configuration conf = new Configuration(); Job job = Job.getInstance(conf); job.setJarByClass(LogDriver.class); job.setMapperClass(LogMapper.class); job.setReducerClass(LogReducer.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(NullWritable.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(NullWritable.class); //设置自定义的outputformat job.setOutputFormatClass(LogOutputFormat.class); FileInputFormat.setInputPaths(job, new Path("D:\\input")); //虽然我们自定义了outputformat,但是因为我们的outputformat继承自fileoutputformat //而fileoutputformat要输出一个_SUCCESS文件,所以在这还得指定一个输出目录 FileOutputFormat.setOutputPath(job, new Path("D:\\logoutput")); boolean b = job.waitForCompletion(true); System.exit(b ? 0 : 1); } }至此需求完成。
参考文献 【尚硅谷大数据Hadoop教程,hadoop3.x搭建到集群调优,百万播放】Hadoop3教程(十六):MapReduce中的OutputFormat由讯客互联人工智能栏目发布,感谢您对讯客互联的认可,以及对我们原创作品以及文章的青睐,非常欢迎各位朋友分享到个人网站或者朋友圈,但转载请说明文章出处“Hadoop3教程(十六):MapReduce中的OutputFormat”