主页 > 游戏开发  > 

pymoo包NSGA2算法实现多目标遗传算法调参详细说明

pymoo包NSGA2算法实现多目标遗传算法调参详细说明

pymoo包NSGA2算法实现多目标遗传算法调参详细说明 1.定义待求解问题1.0定义问题的参数说明1.0.0 求解问题必须设置在```def _evaluate(self, x, out, *args, **kwargs)```函数中1.0.1 问题必须用 out["F"] = [f1, f2] 包裹起来1.0.2 约束条件也必须用 out["G"] = [g3] 包裹起来1.0.3 ```def __init__(self):```里需要定义以下参数1.0.4 约束条件的g以不等式形式写明 会按照小于等于0 进行选择 2.调用NSGA2的算法包设置参数2.1 NSGA2函数的参数设置 3.定义迭代次数90次4.求解最帕累托最优解集的参数x向量4.2 查看输出的X的解 5.帕累托最优解集的X向量参数最优解集分布6.画出帕累托前沿

1.定义待求解问题 1.0定义问题的参数说明 1.0.0 求解问题必须设置在def _evaluate(self, x, out, *args, **kwargs)函数中 1.0.1 问题必须用 out[“F”] = [f1, f2] 包裹起来 1.0.2 约束条件也必须用 out[“G”] = [g3] 包裹起来 1.0.3 def __init__(self):里需要定义以下参数 n_var定义的是待求解的 X X X变量数量n_obj定义的是待求解 f f f 问题数量n_ieq_constr定义的是约束条件的数量xl定义的是待求解的 X X X参数的下限xu定义的是待求解的 X X X参数的上限f1,f2定义问题g1,g2定义约束条件 1.0.4 约束条件的g以不等式形式写明 会按照小于等于0 进行选择 import numpy as np from pymoo.core.problem import ElementwiseProblem class MyProblem(ElementwiseProblem): def __init__(self): super().__init__(n_var=2, # X 变量数量 n_obj=2, # f 问题数 n_ieq_constr=1,# g 约束条件数量 xl=np.array([-2,-2]), # X 自变量下限 xu=np.array([2,2])# X 自变量上限 ) def _evaluate(self, x, out, *args, **kwargs): # 待求解函数 f1 = np.cos(x[0]+x[1]) #100 * (x[0]**2 + x[1]**2) f2 = np.sin(x[0]+x[1]) #(x[0]-1)**2 + x[1]**2 # f3 = (abs(x[0])<0.3)+(abs(x[1])<0.5) # 约束条件会选择 <= 0 的选择 # g1 = 2*(x[0]-0.1) * (x[0]-0.9) / 0.18 # g2 = - 20*(x[0]-0.4) * (x[0]-0.6) / 4.8 # g3 = ((x[0]**2)<0.5)+((x[1]**2)>0.3) g3 = x[0]-0.7 #+(abs(x[1])<0.3) out["F"] = [f1, f2] #待求解问题 #out["G"] = [g1, g2,g3] #约束条件 out["G"] = [g3] #约束条件 problem = MyProblem() 2.调用NSGA2的算法包设置参数 2.1 NSGA2函数的参数设置 pop_sizez种群数量n_offsprings每代的数量sampling#抽样设置crossove()交叉配对设置 prob交叉配对的概率设置 eta mutation()变异译概率 prob是变异的概率设置 eta eliminate_duplicates我们启用重复检查(“eliminate_duplicates=True”),确保交配产生的后代在设计空间值方面与自身和现有种群不同。 from pymoo.algorithms.moo.nsga2 import NSGA2 from pymoo.operators.crossover.sbx import SBX from pymoo.operators.mutation.pm import PM from pymoo.operators.sampling.rnd import FloatRandomSampling,IntegerRandomSampling,BinaryRandomSampling algorithm = NSGA2( pop_size=90, # z种群数量 n_offsprings=100, # 每代的数量 sampling= FloatRandomSampling(), #抽样设置 #交叉配对 crossover=SBX(prob=0.9 #交叉配对概率 , eta=15), #配对效率 #变异 mutation=PM(prob=0.8 #编译概率 ,eta=20),# 配对效率 eliminate_duplicates=True ) 3.定义迭代次数90次 from pymoo.termination import get_termination termination = get_termination("n_gen", 90) 4.求解最帕累托最优解集的参数x向量 from pymoo.optimize import minimize res = minimize(problem, algorithm, termination, seed=1, save_history=True, verbose=True) X = res.X # 求解出来的参数 F = res.F # 帕累托最优解集 4.2 查看输出的X的解 array([[-1.22983903, -0.3408983 ], [-1.17312926, -1.9683635 ], [-1.62815244, -1.25867184], [-1.59459202, -1.24720921], [-0.85812605, -0.86104326], [ 0.14217774, -1.79408273], [-1.16038493, -0.45298884], [-1.30857014, -0.53215836], [-0.99480251, -1.0484723 ], [-1.17506923, -0.83512127], [-1.12330204, -1.13340585], [-1.02395611, -1.33764674], [-0.99658648, -0.88776711], [-0.87963539, -0.86581268], [-1.59330301, -0.09593218], [-1.89860429, -1.07240541], [-0.92025241, -0.88515559], [-1.89221588, -1.02590525], [-1.15977198, -0.61984559], [-1.23391136, -1.89214062], [-1.08575639, -1.1960931 ], [-1.8422881 , -1.17730121], [-1.97907088, -0.67847822], [-1.19339619, -1.30837703], [-1.81657534, -0.6468284 ], [-1.34872892, -1.1691978 ], [-1.70461135, -1.08101794], [-1.28766298, -0.92085304], [-1.10488217, -1.16702018], [-1.45199598, -0.92807938], [-1.83785271, -0.26933177], [-1.10292853, -1.0760453 ], [-1.97460715, -1.02344251], [-1.92346673, -1.17730121], [-1.35716933, -0.9513154 ], [-1.07370789, -1.16339584], [-1.61844778, -0.54832033], [-1.69262569, -1.29666833], [-1.1205858 , -1.9683635 ], [-1.32886108, -1.09105746], [-0.87963539, -0.85896725], [-1.17319829, -1.50153054], [-1.63954555, -1.28599005], [-0.92662448, -0.93538073], [-1.29072744, -0.82715754], [-1.72496415, -1.22313643], [-1.70410919, -1.36171497], [-1.57300848, -1.04123091], [-1.81522276, -0.66364657], [-1.28643454, -1.14856238], [-1.13870379, -0.8286136 ], [-1.60254074, -1.21320856], [-1.3972806 , -0.68146238], [-1.37242908, -0.92807938], [-1.29950364, -0.37689045], [-1.32237812, -1.09105746], [-1.59549137, -1.35399596], [-0.86920703, -1.22313643], [-1.38180886, -1.34157915], [-1.46024398, -1.24232167], [-1.12485534, -1.47579521], [-1.24917941, -1.2408934 ], [-1.6174287 , -1.02798238], [-1.46214609, -0.68146238], [-0.89315598, -0.95504252], [-1.2693953 , -1.07649403], [-1.31640451, -1.32237493], [-1.2414329 , -1.15952844], [-1.10828403, -0.80474544], [-1.06864911, -0.83165391], [-1.83785271, -1.1960931 ], [-1.03382957, -1.50125804], [-1.81678927, -0.71106355], [-1.12485534, -1.50226124], [-1.14170746, -1.05251568], [-0.37583973, -1.94856256], [-1.19888652, -0.86892885], [-1.44462396, -0.94172587], [-1.57293402, -1.19861388], [-1.7873066 , -1.04123091], [-1.19339619, -0.74337764], [-1.41439116, -0.77744839], [-1.03394747, -1.65557748], [-1.29621172, -0.30606688], [-0.85812605, -1.09549174], [-1.31640451, -1.39906326], [-1.36337969, -1.03256822], [-1.59459202, -1.20585082], [-1.10292853, -1.02523266], [-1.85491578, -0.88327578]]) 5.帕累托最优解集的X向量参数最优解集分布 import matplotlib.pyplot as plt plt.figure(figsize=(16,16)) plt.scatter(X[:,0],X[:,-1])

6.画出帕累托前沿 import matplotlib.pyplot as plt plt.figure(figsize=(16,9)) plt.scatter(F[:,0],F[:,-1]) plt.savefig("NSGA2demo帕累托前沿.png")

标签:

pymoo包NSGA2算法实现多目标遗传算法调参详细说明由讯客互联游戏开发栏目发布,感谢您对讯客互联的认可,以及对我们原创作品以及文章的青睐,非常欢迎各位朋友分享到个人网站或者朋友圈,但转载请说明文章出处“pymoo包NSGA2算法实现多目标遗传算法调参详细说明