【yolov5目标检测】使用yolov5训练自己的训练集
- 软件开发
- 2025-08-16 17:27:02

数据集准备
首先得准备好数据集,你的数据集至少包含images和labels,严格来说你的images应该包含训练集train、验证集val和测试集test,不过为了简单说明使用步骤,其中test可以不要,val和train可以用同一个,因此我这里只用了一个images
其中images装的是图片数据,labels装的是与图片一一对应同名的yolo格式txt,即类别号,经过归一化的中心x和y坐标以及宽和高
下载yolov5
到GitHub上下载整个项目的压缩包zip下来
下来解压zip,把我们刚刚的数据集也放进去
再下载一个yolov5的预训练模型,我这里选择yolov5n.pt,下下来也放到解压文件夹中
然后用pycharm打开这个文件夹,看看哪里标红还差什么软件包没安装给安装上
配置yaml先配置一下yolov5预训练模型的yaml,我下载的是yolov5n.pt模型,因此需要配置一下yolov5n.yaml,修改nc的数值为类别数目,我这里的数据集只有乌骨鸡和狮头鹅,因此改成2
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license # Parameters nc: 2 # number of classes depth_multiple: 0.33 # model depth multiple width_multiple: 0.25 # layer channel multiple anchors: - [10,13, 16,30, 33,23] # P3/8 - [30,61, 62,45, 59,119] # P4/16 - [116,90, 156,198, 373,326] # P5/32 # YOLOv5 v6.0 backbone backbone: # [from, number, module, args] [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 [-1, 3, C3, [128]], [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 [-1, 6, C3, [256]], [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 [-1, 9, C3, [512]], [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 [-1, 3, C3, [1024]], [-1, 1, SPPF, [1024, 5]], # 9 ] # YOLOv5 v6.0 head head: [[-1, 1, Conv, [512, 1, 1]], [-1, 1, nn.Upsample, [None, 2, 'nearest']], [[-1, 6], 1, Concat, [1]], # cat backbone P4 [-1, 3, C3, [512, False]], # 13 [-1, 1, Conv, [256, 1, 1]], [-1, 1, nn.Upsample, [None, 2, 'nearest']], [[-1, 4], 1, Concat, [1]], # cat backbone P3 [-1, 3, C3, [256, False]], # 17 (P3/8-small) [-1, 1, Conv, [256, 3, 2]], [[-1, 14], 1, Concat, [1]], # cat head P4 [-1, 3, C3, [512, False]], # 20 (P4/16-medium) [-1, 1, Conv, [512, 3, 2]], [[-1, 10], 1, Concat, [1]], # cat head P5 [-1, 3, C3, [1024, False]], # 23 (P5/32-large) [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) ]然后开始配置数据集的yaml,可以复制coco128.yaml的内容进行修改,新建一个xxx.yaml,修改path为数据集路径,train为训练集的相对路径,val为验证机的相对路径,因为没有用上test,因此把它注释掉了,还有names也要修改为数据集的类别名
# YOLOv5 🚀 by Ultralytics, AGPL-3.0 license # COCO128 dataset .kaggle /ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics # Example usage: python train.py --data coco128.yaml # parent # ├── yolov5 # └── datasets # └── coco128 ← downloads here (7 MB) # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] path: ikunData # dataset root dir train: images # train images (relative to 'path') 128 images val: images # val images (relative to 'path') 128 images #test: # test images (optional) # Classes names: 0: goose 1: chicken 开始训练然后准备开始训练,打开train.py,修改它的参数,主要是这三行代码需要修改,修改预训练模型文件的路径,配置文件的路径以及数据集配置文件的路径
parser.add_argument('--weights', type=str, default=ROOT / 'yolov5n.pt', help='initial weights path') parser.add_argument('--cfg', type=str, default='models/yolov5n.yaml', help='model.yaml path') parser.add_argument('--data', type=str, default=ROOT / 'ikunData.yaml', help='dataset.yaml path')噢,还有训练的epochs数目,这个次数由你决定
parser.add_argument('--epochs', type=int, default=30, help='total training epochs')然后就可以开始运行train.py。
运行完了会生成一个runs文件夹,里面有训练出来的best.pt,和训练过程的记录
然后开始目标检测,准备好运行detect.py的参数,最基本的就是运行的权重文件,就是我们train出来的best.pt,还有要测试的数据路径
--weights runs/train/exp/weights/best.pt --source ikunData/images把它写到运行配置中去
然后开始运行detect.py,运行完后会在runs里面生成detect文件夹,里面就有检测结果
你可能会发现有多个框框在同一个目标上,这时我们在detect.py上增加一个参数,这里是nms非极大值抑制,我们将IOU的阈值设置为0,再次运行detect.py
--weights runs/train/exp/weights/best.pt --source ikunData/images --iou-thres 0这次的效果要好一点
【yolov5目标检测】使用yolov5训练自己的训练集由讯客互联软件开发栏目发布,感谢您对讯客互联的认可,以及对我们原创作品以及文章的青睐,非常欢迎各位朋友分享到个人网站或者朋友圈,但转载请说明文章出处“【yolov5目标检测】使用yolov5训练自己的训练集”