主页 > 人工智能  > 

yolov5加关键点回归

yolov5加关键点回归

文章目录 一、数据1)数据准备2)标注文件说明 二、基于yolov5-face 修改自己的yolov5加关键点回归1、dataloader,py2、augmentations.py3、loss.py4、yolo.py

一、数据 1)数据准备

1、手动创建文件夹: yolov5-face-master/data/widerface/train 和 yolov5-face-master/data/widerface/val 2、下载的WIDER_train里的images/ 和 标注文件retinaface_gt_v1.1/train/ 里的label.txt 放在 yolov5-face-master/datasets/train/下 (val验证集同理) 3、执行

cd data/ python3 train2yolo.py ./datasets/train ./data/widerface/train python3 val2yolo.py ./datasets/val ./data/widerface/val

执行train2yolo.py后的data目录:

2)标注文件说明

示例: label文件: yolov5-face-master/data/widerface/train/0_Parade_Parade_0_1040.txt

0 0.51904296875 0.23813229571984434 0.0732421875 0.08560311284046693 0.5035009765625 0.2264350194552529 0.5433701171875 0.22805058365758757 0.5264765625 0.2425898832684825 0.5035009765625 0.26035953307392995 0.5406669921875 0.2625136186770428

每行15个元素: labels[1:5]:检测框bbox。 labels[5:] :5个关键点坐标(x,y)的归一化形式。(依次为左眼、右眼、鼻子、嘴角左、嘴角右。 (归一化是x/w0,y/h0 ,

注:这儿原图尺寸写成w0,h0 是参考utils/face_datasets.py/LoadFaceImagesAndLabels 类的 __getitem__函数。 其中的w0、h0为原图尺寸, w,h为resize的尺寸。

二、基于yolov5-face 修改自己的yolov5加关键点回归

需要修改的文件:dataloader.py、augmentations.py、loss.py、yolo.py 以及自己的inference脚本。

1、dataloader,py 2、augmentations.py 3、loss.py 4、yolo.py
标签:

yolov5加关键点回归由讯客互联人工智能栏目发布,感谢您对讯客互联的认可,以及对我们原创作品以及文章的青睐,非常欢迎各位朋友分享到个人网站或者朋友圈,但转载请说明文章出处“yolov5加关键点回归