知识库ragflow和dify安装
- 人工智能
- 2025-09-18 12:03:02

ragflow的安装参考官方的Quick start文档,如下。 ragflow.io/docs/dev/
在虚拟机中进行安装,虚拟机8核处理器,16G内存。安装有操作系统Ubuntu 22.04.4 LTS。
设置单个进程可使用的内存映射区域的最大数量,默认值为65530,以下设置为262144。并且将配置写入/etc/sysctl.conf 文件,设备重启可自动配置上。
``` # sysctl vm.max_map_count vm.max_map_count = 65530 # # sysctl -w vm.max_map_count=262144 vm.max_map_count = 262144 # # sysctl vm.max_map_count vm.max_map_count = 262144 # # # cat /etc/sysctl.conf # # /etc/sysctl.conf - Configuration file for setting system variables # See /etc/sysctl.d/ for additional system variables. # See sysctl.conf (5) for information. #
#kernel.domainname = example
# Uncomment the following to stop low-level messages on console #kernel.printk = 3 4 1 3
vm.max_map_count=262144 ```
下载ragflow工程,切换到最新的版本v0.16.0。
``` # git clone github /infiniflow/ragflow.git Cloning into 'ragflow'... remote: Enumerating objects: 26810, done. remote: Counting objects: 100% (4/4), done. remote: Total 26810 (delta 3), reused 3 (delta 3), pack-reused 26806 (from 2) Receiving objects: 100% (26810/26810), 62.49 MiB | 9.49 MiB/s, done. Resolving deltas: 100% (19405/19405), done. # # cd ragflow/ # # git checkout -f v0.16.0 Note: switching to 'v0.16.0'. ```
安装依赖包:
``` # apt install docker docker-compose-v2 ```
下载预编译好的docker镜像,出现如下的错误信息。
``` # docker compose -f docker/docker-compose.yml up WARN[0000] The "HF_ENDPOINT" variable is not set. Defaulting to a blank string. WARN[0000] The "MACOS" variable is not set. Defaulting to a blank string. [+] Running 9/11 ⠏ minio [⣿⣿⣿⣿⣿⣿⣿] 51.27MB / 52.78MB Pulling 15.9s ✔ f72461870632 Pull complete 3.5s ✔ 683391db8929 Pull complete 3.6s ⠋ ba8b8055313f Extracting [==================================================>] 35.51MB/35.... 10.1s ✔ a8e0787fb7ed Download complete 4.7s ✔ fd20cadb8d39 Download complete 5.0s ✔ 3738ac54d510 Download complete 6.3s ✔ 128c59a31db4 Download complete 6.5s ✘ mysql Error Get " registry-1.docker.io/v2/": context deadline exceeded 15.9s ✘ ragflow Error context canceled 15.9s ✘ redis Error context canceled 15.9s Error response from daemon: Get " registry-1.docker.io/v2/": context deadline exceeded ```
在文件daemon.json中写入以下镜像源地址:
``` # cat /etc/docker/daemon.json {
"registry-mirrors": [" docker.m.daocloud.io/", " huecker.io/", " dockerhub.timeweb.cloud", " noohub.ru/", " dockerproxy ", " docker.nju.edu ", "http://hub.daocloud.io", " dockerhub.icu", " docker.ckyl.me", " docker.awsl9527 ", " hub.uuuadc.top", " docker.anyhub.us.kg", " dockerhub.jobcher ", " registry.docker-cn ", "http://hub-mirror.c.163 ", " mirror.baidubce ", " mirror.aliyuncs ", " dockerpull.org", " hub.geekery ", " docker.1ms.run", " docker.1panel.dev", " docker.1panel.live", " docker.foreverlink.love", " dytt.online", " func.ink", " lispy.org", " docker.nju.edu ", " docker.mirrors.ustc.edu "]
} ```
或者,按照官方文档设置,在 docker/.env 文件内根据变量 RAGFLOW_IMAGE 的注释提示选择华为云或者阿里云的相应镜像。
华为云镜像名:swr -north-4.myhuaweicloud /infiniflow/ragflow阿里云镜像名:registry -hangzhou.aliyuncs /infiniflow/ragflow这里,使用在daemon.json文件中添加镜像源的方法,需要重新启动docker:
```
# systemctl daemon-reload # systemctl restart docker # systemctl status docker ```
镜像拉下来之后,启动ragflow,注意进入到ragflow/docker子目录下执行命令,不然会报错。
``` # cd docker # docker compose up ```
查看启动的docker镜像:
``` # docker images REPOSITORY TAG IMAGE ID CREATED SIZE infiniflow/ragflow v0.16.0-slim dc20d4239e94 3 weeks ago 7.03GB valkey/valkey 8 405e0e9d7a59 7 weeks ago 134MB mysql 8.0.39 f5da8fc4b539 7 months ago 573MB quay.io/minio/minio RELEASE.2023-12-20T01-00-02Z 73f9f0b5b015 14 months ago 151MB docker.elastic.co/elasticsearch/elasticsearch 8.11.3 792fab0c0bd8 15 months ago 1.43GB ```
查看相关日志命令:
``` # docker logs -f ragflow-es-01 # docker logs -f ragflow-server # docker logs -f ragflow-redis # docker logs -f ragflow-mysql ```
打开浏览器登录:
需要注册一个账号,登录之后,首先关联LLM提供商,这里可以选择阿里的通义千问,也支持硅基流动,后者注册之后应该是有几十块钱的金额可以使用,测试基本够用:
之后,就可以创建知识库了。
手动上传资料文件,注意这里要执行解析操作,否则无法使用。
最后,创建聊天助理,关联以上创建的知识库,提示引擎中可以修改提示词,模型设置中可更换大语言模型。
在另外一台虚拟机上安装dify,系统Ubuntu 22.04.4 LTS。如下下载dify工程:
```
# git clone github /langgenius/dify.git
```
拉取镜像:
```
# cd dify/docker/ # cp .env.example .env # docker compose up -d
```
由于网络限制,还是需要修改/etc/docker/daemon.json,添加镜像源。但是下载还是很慢很慢,根据经验一般每天下午6点以后,网络比较好。
完成之后,dify自动启动。
看一下/var/lib/docker/目录的大小,占用了10几个G的空间:
```
root@logging:/var/lib/docker# du -sh * 112K buildkit 556K containers 4.0K engine-id 13M image 100K network 12G overlay2 16K plugins 4.0K runtimes 4.0K swarm 4.0K tmp 48K volumes
```
查看启动的docker镜像:
```
root@logging:~# docker image ls REPOSITORY TAG IMAGE ID CREATED SIZE ubuntu/squid latest dae40da440fe 2 days ago 243MB langgenius/dify-plugin-daemon 0.0.3-local 98e493768cf1 2 days ago 909MB langgenius/dify-api 1.0.0 e75fe639e420 2 days ago 2.14GB langgenius/dify-web 1.0.0 0325f9a1e172 2 days ago 472MB postgres 15-alpine afbf3abf6aeb 3 days ago 273MB nginx latest b52e0b094bc0 3 weeks ago 192MB redis 6-alpine 6dd588768b9b 7 weeks ago 30.2MB langgenius/dify-sandbox 0.2.10 4328059557e8 4 months ago 567MB semitechnologies/weaviate 1.19.0 8ec9f084ab23 22 months ago 52.5MB
```
打开浏览器,登录dify:
注册账号,登录dify。
dify数据源支持web网站爬取,这一点相对于ragflow比较好。
知识库ragflow和dify安装由讯客互联人工智能栏目发布,感谢您对讯客互联的认可,以及对我们原创作品以及文章的青睐,非常欢迎各位朋友分享到个人网站或者朋友圈,但转载请说明文章出处“知识库ragflow和dify安装”