主页 > 互联网  > 

调用openssl实现加解密算法

调用openssl实现加解密算法

        由于工作中涉及到加解密,包括Hash(SHA256)算法、HMAC_SHA256 算法、ECDH算法、ECC签名算法、AES/CBC 128算法一共涉及5类算法,笔者通过查询发现openssl库以上算法都支持,索性借助openssl库实现上述5类算法。笔者用的openssl库版本为 OpenSSL 1.1.1k 。

Hash(SHA256)算法

算法代码如下:

#include <openssl/sha.h> #include <iostream> #include <iomanip> #include <sstream> #include <vector> // 将字节数组转换为十六进制字符串 // 将字节数组转换为十六进制字符串 std::string bytesToHex(const unsigned char* bytes, size_t length) { std::stringstream ss; ss << std::hex << std::setfill('0'); for (size_t i = 0; i < length; ++i) { ss << std::setw(2) << (int)bytes[i]; } return ss.str(); } int main() { // 原数据 const std::string data = "6572B36A91E28FB900134C3010C445437DC04D04"; // 创建一个SHA256上下文 SHA256_CTX sha256; SHA256_Init(&sha256); // 更新上下文以包含要哈希的数据 SHA256_Update(&sha256, data.c_str(), data.size()); // 计算哈希值 unsigned char hash[SHA256_DIGEST_LENGTH]; SHA256_Final(hash, &sha256); // 将哈希值转换为十六进制字符串并输出 std::string hashHex = bytesToHex(hash, SHA256_DIGEST_LENGTH); std::cout << "SHA256 hash: " << hashHex << std::endl; return 0; }

运行结果如下:

HMAC_SHA256 算法

 算法代码如下:

#include <openssl/hmac.h> #include <iostream> #include <iomanip> #include <sstream> #include <cstring> // 将字节数组转换为十六进制字符串 std::string bytesToHex(const unsigned char* bytes, size_t length) { std::stringstream ss; ss << std::hex << std::setfill('0'); for (size_t i = 0; i < length; ++i) { ss << std::setw(2) << (int)bytes[i]; } return ss.str(); } int main() { // 要进行HMAC的数据 const std::string data = "374D34303534424E39323330351000FFFFFFFFFF"; // HMAC的密钥 const std::string key = "c0df3585876ac6bb02bf6347b3654993"; // 输出缓冲区 unsigned char* hmacResult = new unsigned char[EVP_MAX_MD_SIZE]; unsigned int hmacLen = 0; // 使用HMAC_SHA256进行计算 HMAC_CTX* hmacCtx = HMAC_CTX_new(); HMAC_Init_ex(hmacCtx, key.data(), key.size(), EVP_sha256(), NULL); HMAC_Update(hmacCtx, (unsigned char*)data.data(), data.size()); HMAC_Final(hmacCtx, hmacResult, &hmacLen); // 将HMAC结果转换为十六进制字符串并输出 std::string hmacHex = bytesToHex(hmacResult, hmacLen); std::cout << "HMAC_SHA256: " << hmacHex << std::endl; // 清理资源 HMAC_CTX_free(hmacCtx); delete[] hmacResult; return 0; }

 执行结果如下:

 ECDH算法

        这个算法没有找到网页端的在线工具验证,但是笔者根据我们这次给的案例验证如下:

笔者感觉上述给的最终生成的会话秘钥应该有问题,生成的会话秘钥应该是256bit。

算法代码如下:

#include <openssl/ec.h> #include <openssl/bn.h> #include <openssl/pem.h> #include <iostream> #include <iomanip> #include <sstream> using namespace std; // 辅助函数,用于将十六进制字符串转换为 BIGNUM BIGNUM* hex_to_BN(const std::string& hex) { BIGNUM* bn = BN_new(); if (!BN_hex2bn(&bn, hex.c_str())) { BN_free(bn); throw std::runtime_error("Failed to convert hex to BIGNUM"); } return bn; } // 辅助函数,用于打印会话密钥 void print_session_key(const unsigned char* key, size_t key_len) { std::stringstream ss; ss << "Session Key: "; for (size_t i = 0; i < key_len; ++i) { ss << std::hex << std::setw(2) << std::setfill('0') << (int)key[i]; } std::cout << ss.str() << std::endl; } int main() { // 私钥十六进制串 std::string privateKeyHex = "5904507894591f4b39308a51d5e2e25566a66366b1d6d952fba17de3af19235f"; // 对端公钥十六进制串 std::string publicKeyHex = "04fef2f1a2a0df9f75cda6e36268b7f62749cae378b7a5b9f311add58beaeadf3e49e41ac2acede766a21feaf354119f70ec3587f1054a1286ba08a1d866ef40ed"; // 创建 EC_KEY 对象,使用 secp256r1 曲线 EC_KEY* eckey = EC_KEY_new_by_curve_name(NID_X9_62_prime256v1); if (!eckey) { std::cerr << "Error creating EC key with secp256r1 curve" << std::endl; return 1; } // 设置私钥 BIGNUM* privateKeyBN = hex_to_BN(privateKeyHex); if (!EC_KEY_set_private_key(eckey, privateKeyBN)) { std::cerr << "Error setting private key" << std::endl; BN_free(privateKeyBN); EC_KEY_free(eckey); return 1; } BN_free(privateKeyBN); // EC_KEY_set_private_key 会复制 BN,所以可以安全释放 // 解析对端公钥 const EC_GROUP* group = EC_KEY_get0_group(eckey); EC_POINT* pubKeyPoint = EC_POINT_new(group); if (!EC_POINT_hex2point(group, publicKeyHex.c_str(), pubKeyPoint, NULL)) { std::cerr << "Error parsing public key" << std::endl; EC_POINT_free(pubKeyPoint); EC_KEY_free(eckey); return 1; } // 执行 ECDH 密钥交换 unsigned char* session_key1 = (unsigned char*)OPENSSL_malloc(32); if (session_key1 == NULL) { std::cerr << "Error allocating memory for session keys" << std::endl; OPENSSL_free(session_key1); EC_KEY_free(eckey); return 1; } int ret = ECDH_compute_key(session_key1, 32, pubKeyPoint, eckey, NULL); if (ret < 0) { std::cerr << "Error computing shared secret" << std::endl; OPENSSL_free(session_key1); EC_POINT_free(pubKeyPoint); EC_KEY_free(eckey); return 1; } // 将共享密钥转换为十六进制字符串并打印 print_session_key(session_key1, 32); // 清理资源 OPENSSL_free(session_key1); EC_POINT_free(pubKeyPoint); EC_KEY_free(eckey); return 0; }

执行结果为:

 ECC签名算法

算法代码如下:

#include <openssl/ec.h> #include <openssl/ecdsa.h> #include <openssl/obj_mac.h> #include <openssl/sha.h> #include <openssl/evp.h> #include <openssl/bn.h> #include <openssl/pem.h> #include <openssl/err.h> #include <iostream> #include <vector> #include <cstring> // 将十六进制字符串转换为字节数组 std::vector<unsigned char> hex2bytes(const std::string& hex) { std::vector<unsigned char> bytes; for (size_t i = 0; i < hex.length(); i += 2) { std::string byteString = hex.substr(i, 2); unsigned char byte = (unsigned char) strtol(byteString.c_str(), nullptr, 16); bytes.push_back(byte); } return bytes; } // 验证ECDSA签名 bool verify_ecdsa_signature(const std::string& public_key_hex, const std::string& data_hex, const std::string& signature_hex) { // 将十六进制字符串转换为字节数组 std::vector<unsigned char> public_key_bytes = hex2bytes(public_key_hex); std::vector<unsigned char> data_bytes = hex2bytes(data_hex); std::vector<unsigned char> signature_bytes = hex2bytes(signature_hex); // 创建EC_KEY对象 EC_KEY* ec_key = EC_KEY_new_by_curve_name(NID_X9_62_prime256v1); if (!ec_key) { std::cerr << "Failed to create EC_KEY" << std::endl; return false; } // 从字节数组中解析公钥 const unsigned char* p = public_key_bytes.data(); ec_key = o2i_ECPublicKey(&ec_key, &p, public_key_bytes.size()); if (!ec_key) { std::cerr << "Failed to parse public key" << std::endl; EC_KEY_free(ec_key); return false; } // 计算数据的哈希值(假设使用SHA-256) unsigned char hash[SHA256_DIGEST_LENGTH]; SHA256_CTX sha256; SHA256_Init(&sha256); SHA256_Update(&sha256, data_bytes.data(), data_bytes.size()); SHA256_Final(hash, &sha256); // 验证签名 ECDSA_SIG* ec_sig = ECDSA_SIG_new(); const unsigned char* sig = signature_bytes.data(); ec_sig = d2i_ECDSA_SIG(&ec_sig, &sig, signature_bytes.size()); if (!ec_sig) { std::cerr << "Failed to parse signature" << std::endl; EC_KEY_free(ec_key); return false; } int verify_result = ECDSA_do_verify(hash, SHA256_DIGEST_LENGTH, ec_sig, ec_key); if (verify_result != 1) { std::cerr << "Signature verification failed" << std::endl; ECDSA_SIG_free(ec_sig); EC_KEY_free(ec_key); return false; } // 释放资源 ECDSA_SIG_free(ec_sig); EC_KEY_free(ec_key); return true; } int main() { // 公钥、数据和签名的十六进制字符串 std::string public_key_hex = "0467BF4978CB114972AE0AF84E22FD4099D1FF045F88830C41D9AC5CC4B4EBA17F8D1AB65884368BD47E1EF8A28A33EEE92BB6409AFB5217E0F120866B85913E0B"; std::string data_hex = "03"; std::string signature_hex = "3044022023FAE603D8A64BF004DCC56BCFD904F2E2E4AFCBD9DDF1F2C6F4EE1A4D7A1F3C0220708D8D63FBCD6BCA61B8827280F628074759C77104952307DD9C407F5B0B2C2D"; // 验证签名 bool is_valid = verify_ecdsa_signature(public_key_hex, data_hex, signature_hex); if (is_valid) { std::cout << "Signature is valid" << std::endl; } else { std::cout << "Signature is invalid" << std::endl; } return 0; }

执行结果如下:

AES/CBC128算法 

 算法代码如下:

#include <openssl/aes.h> #include <iostream> #include <cstring> // 假设你的数据长度总是16字节的倍数 void aes_cbc_128_encrypt_nopadding(const unsigned char* key, unsigned char* iv, const unsigned char* input, unsigned char* output, size_t length) { AES_KEY aesKey; AES_set_encrypt_key(key, 256, &aesKey); // 设置256位AES加密密钥 // 由于我们假设输入数据长度是16字节的倍数,我们可以直接加密 for (size_t i = 0; i < length; i += AES_BLOCK_SIZE) { AES_cbc_encrypt(input + i, output + i, AES_BLOCK_SIZE, &aesKey, iv, AES_ENCRYPT); // 更新IV,对于CBC模式,每个块的IV是上一个块的密文 std::memcpy(iv, output + i, AES_BLOCK_SIZE); } } // 解密函数,使用256位AES密钥和CBC模式 void aes_cbc_128_decrypt_nopadding(const unsigned char* key, const unsigned char* iv, const unsigned char* input, unsigned char* output, size_t length) { AES_KEY aesKey; AES_set_decrypt_key(key, 256, &aesKey); // 在CBC模式下,解密时需要一个临时的IV,因为它会在解密过程中被更新 unsigned char temp_iv[AES_BLOCK_SIZE]; std::memcpy(temp_iv, iv, AES_BLOCK_SIZE); for (size_t i = 0; i < length; i += AES_BLOCK_SIZE) { AES_cbc_encrypt(input + i, output + i, AES_BLOCK_SIZE, &aesKey, temp_iv, AES_DECRYPT); // 更新临时IV为下一个块的密文(实际上是上一个块的明文) std::memcpy(temp_iv, input + i, AES_BLOCK_SIZE); } } // 将十六进制字符串转换为字节数组 std::string hex2str(const std::string& hex) { std::string retStr; for (size_t i = 0; i < hex.length(); i += 2) { std::string byteString = hex.substr(i, 2); unsigned char byte = (unsigned char) strtol(byteString.c_str(), nullptr, 16); retStr += byte; } return retStr; } int main() { // 256位(32字节)的AES密钥 const std::string keyhex = "c5ba9981452fa728a10794730919aaa747ca54df2f21fab685bbd0fdb53f05fb"; const std::string keystr = hex2str(keyhex); // 初始化向量(IV),需要与密钥长度相同,即16字节 unsigned char iv[AES_BLOCK_SIZE] = {0x00}; // 要加密的数据(确保长度是16字节的倍数) const std::string plaintexthex = "313131313131313131313131313131313232323232323232323232323232323230450221009F9B7BC16546FDFA85866AFE2761FAF6C1B018C99E6B7C6339FF47BA126E01990220558339565F469C3AD4EBA77AEE5C22C7C464449D6395FBC1158F1B589569336980000000000000000000000000000000000000000000000000"; const std::string plaintext = hex2str(plaintexthex); // 正好是16字节 unsigned char input[plaintext.size()], key[2 * AES_BLOCK_SIZE]; std::copy(plaintext.begin(), plaintext.end(), input); std::copy(keystr.begin(), keystr.end(), key); // 输出缓冲区 unsigned char output[plaintext.size()]; unsigned char in2put[plaintext.size()]; // 调用加密函数 aes_cbc_128_encrypt_nopadding(key, iv, input, output, plaintext.size()); // 输出加密后的数据(以十六进制形式) std::cout << "加密数据 :"; for (size_t i = 0; i < plaintext.size(); ++i) { printf("%02x", output[i]); } std::cout << std::endl; memset(iv, 0, AES_BLOCK_SIZE); // 调用解密函数 aes_cbc_128_decrypt_nopadding(key, iv, output, in2put, plaintext.size()); // 输出加密后的数据(以十六进制形式) std::cout << "解密数据 :"; for (size_t i = 0; i < plaintext.size(); ++i) { printf("%02x", in2put[i]); } std::cout << std::endl; return 0; }

执行结果如下:

标签:

调用openssl实现加解密算法由讯客互联互联网栏目发布,感谢您对讯客互联的认可,以及对我们原创作品以及文章的青睐,非常欢迎各位朋友分享到个人网站或者朋友圈,但转载请说明文章出处“调用openssl实现加解密算法