网络库OKHTTP(2)面试题
- 创业
- 2025-08-16 15:12:01

序、慢慢来才是最快的方法。
背景OkHttp 是一套处理 HTTP 网络请求的依赖库,由 Square 公司设计研发并开源,目前可以在 Java 和 Kotlin 中使用。对于 Android App 来说,OkHttp 现在几乎已经占据了所有的网络请求操作。
OKHttp源码官网
问1:OKHttp有哪些拦截器,分别起什么作用必考题,头两年没考,今年必考。
OKHTTP的拦截器是把所有的拦截器放到一个list里,然后每次依次执行拦截器,并且在每个拦截器分成三部分:
预处理拦截器内容通过proceed方法把请求交给下一个拦截器下一个拦截器处理完成并返回,后续处理工作。这样依次下去就形成了一个链式调用,看看源码,具体有哪些拦截器:
getResponseWithInterceptorChain()
@Throws(IOException::class) internal fun getResponseWithInterceptorChain(): Response { // Build a full stack of interceptors. val interceptors = mutableListOf<Interceptor>() interceptors += client.interceptors interceptors += RetryAndFollowUpInterceptor(client) interceptors += BridgeInterceptor(client.cookieJar) interceptors += CacheInterceptor(client.cache) interceptors += ConnectInterceptor if (!forWebSocket) { interceptors += client.networkInterceptors } interceptors += CallServerInterceptor(forWebSocket) val chain = RealInterceptorChain( call = this, interceptors = interceptors, index = 0, exchange = null, request = originalRequest, connectTimeoutMillis = client.connectTimeoutMillis, readTimeoutMillis = client.readTimeoutMillis, writeTimeoutMillis = client.writeTimeoutMillis ) var calledNoMoreExchanges = false try { val response = chain.proceed(originalRequest) if (isCanceled()) { response.closeQuietly() throw IOException("Canceled") } return response } catch (e: IOException) { calledNoMoreExchanges = true throw noMoreExchanges(e) as Throwable } finally { if (!calledNoMoreExchanges) { noMoreExchanges(null) } } }根据源码可知,一共七个拦截器:
addInterceptor(Interceptor),这是由开发者设置的,会按照开发者的要求,在所有的拦截器处理之前进行最早的拦截处理,比如一些公共参数,Header都可以在这里添加。RetryAndFollowUpInterceptor,这里会对连接做一些初始化工作,以及请求失败的充实工作,重定向的后续请求工作。跟他的名字一样,就是做重试工作还有一些连接跟踪工作。BridgeInterceptor,这里会为用户构建一个能够进行网络访问的请求,同时后续工作将网络请求回来的响应Response转化为用户可用的Response,比如添加文件类型,content-length计算添加,gzip解包。CacheInterceptor,这里主要是处理cache相关处理,会根据OkHttpClient对象的配置以及缓存策略对请求值进行缓存,而且如果本地有了可⽤的Cache,就可以在没有网络交互的情况下就返回缓存结果。ConnectInterceptor,这里主要就是负责建立连接了,会建立TCP连接或者TLS连接,以及负责编码解码的HttpCodecnetworkInterceptors,这里也是开发者自己设置的,所以本质上和第一个拦截器差不多,但是由于位置不同,所以用处也不同。这个位置添加的拦截器可以看到请求和响应的数据了,所以可以做一些网络调试。CallServerInterceptor,这里就是进行网络数据的请求和响应了,也就是实际的网络I/O操作,通过socket读写数据。 问2:OKHttp请求的流程?我们知道Okhttp中通过okhttpClient对象是通过Builder对象初始化出来的,此处Builder的用法是建造者模式,建造者模式主要是分离出外部类的属性初始化,而初始化属性交给了内部类Buidler类,这么做的好处是外部类不用关心属性的初始化。 而在初始化的时候有interceptors、networkInterceptors两种拦截器的初始化,还有dispatcher(分发器)的初始化,以及后面需要讲到的cache(缓存)初始化等。
初始化完了后通过builder的build方法构造出okhttpClient对象,该类被称作客户端类,通过它的newCall方法返回RealCall对象,在newCall过程的过程中需要request的信息,request信息包装了url、method、headers、body等信息。最后通过RealCall的同步或异步方法交给了okhttpClient的dispatcher来处理,在处理同步或异步之前都会判断有没有正在executed,所以我们不能对同一个RealCall调用异步或同步方法。
在异步的时候会把RealCall给包装成一个AsyncCall,它是一个runnable对象。接着就来到了分发器异步处理部分,首先会把AsyncCall加入到readyAsyncCalls的集合中,该集合表示准备阶段的请求集合,紧接着从runningAsyncCalls(该集合装的都是要即将请求的集合)和readyAsyncCalls集合中找相同host的AsyncCall,如果找到了会把当中记录的相同host的个数给该AsyncCall。注意这里保存host个数用的原子性的AtomicInteger来记录的
接着会去判断最大的请求是否大于64以及相同host是否大于5个,这里也是okhttp面试高频知识点,如果都通过的话,会把当前的AsyncCall的相同host记录数加一,接着会加入到runningAsyncCalls集合中,接着循环遍历刚符合条件的AsyncCall,通过线程池去执行AsyncCall,注意此处的线程池的配置是没有核心线程,总的线程个数是没有限制的,也就是说都是非核心线程,并且个数没有限制,非核心线程等待的时间是60秒,并且使用的任务队列是SynchronousQueue,它是一个没有容量的阻塞队列,只会当里面没有任务的时候,才能往里面放任务,当放完之后,只能等它的任务被取走才能放,这不就是jdk里面提供的Executors.newCachedThreadPool线程池吗,可能是okhttp想自己定义线程工厂的参数吧,定义线程的名字。
所以到这里才会进入到子线程,由于AsyncCall是一个runnable,因此最终执行来到了它的run方法吧,run方法最终会走到execute方法,该方法来到了okhttp最有意思的单链表结构的拦截器部分,它会把所有的拦截器组装成一个集合,然后传给RealInterceptorChain的process方法,在该方法中,会先把下一个RealInterceptorChain初始化出来,然后把下一个RealInterceptorChain传给当前Interceptor的intercept方法,最终一个个的response返回到AsyncCall的execute方法。
处理完当前的AsyncCall后,会交给dispatcher,它会将该AsyncCall的host数减一,并且把它从runningAsyncCalls集合中移除,接着再从readyAsyncCalls集合中拿剩下的AsyncCall继续执行,直到执行完readyAsyncCalls里面的AsyncCall。
问3:OkHttp怎么实现连接池?总结
连接池部分主要是在RealConnectionPool类中,该类用connections(双端队列)存储所有的连接,cleanupRunnable是专门用来清除超时的RealConnection,既然有清除的任务,那肯定有清除的线程池,没错,该线程池(executor)跟okhttp处理异步时候的线程池是一样的,keepAliveDurationNs表示每一个连接keep-alive的时间,默认是5分钟,maxIdleConnections连接池的最大容量,默认是5个。RealConnection中有transmitters字段,用来保存该连接的transmitter个数,通过里面的transmitter个数来标记该RealConnection有没有在使用中。
连接池的意义?
频繁的进行建立Sokcet连接(TCP三次握手)和断开Socket(TCP四次分手)是非常消耗网络资源和浪费时间的,HTTP中的keepalive连接对于 降低延迟和提升速度有非常重要的作用。复用连接就需要对连接进行管理,这里就引入了连接池的概念。Okhttp支持5个并发KeepAlive,默认链路生命为5分钟(链路空闲后,保持存活的时间),连接池有ConectionPool实现,对连接进行回收和管理。为什么需要连接池?
频繁的进行建立Sokcet连接和断开Socket是非常消耗网络资源和浪费时间的,所以HTTP中的keepalive连接对于降低延迟和提升速度有非常重要的作用。
keepalive机制是什么呢?
也就是可以在一次TCP连接中可以持续发送多份数据而不会断开连接。所以连接的多次使用,也就是复用就变得格外重要了,而复用连接就需要对连接进行管理,于是就有了连接池的概念。
OkHttp中使用ConectionPool实现连接池,默认支持5个并发KeepAlive,默认链路生命为5分钟。
怎么实现的?
1,首先,ConectionPool中维护了一个双端队列Deque,也就是两端都可以进出的队列,用来存储连接。
2.然后在ConnectInterceptor,也就是负责建立连接的拦截器中,首先会找可用连接,也就是从连接池中去获取连接,具体的就是会调用到ConectionPool的get方法。
RealConnection get(Address address, StreamAllocation streamAllocation, Route route) { assert (Thread.holdsLock(this)); for (RealConnection connection : connections) { if (connection.isEligible(address, route)) { streamAllocation.acquire(connection, true); return connection; } } return null; }也就是遍历了双端队列,如果连接有效,就会调用acquire方法计数并返回这个连接。
3.如果没找到可用连接,就会创建新连接,并会把这个建立的连接加入到双端队列中,同时开始运行线程池中的线程,其实就是调用了ConectionPool的put方法。
public final class ConnectionPool { void put(RealConnection connection) { if (!cleanupRunning) { //没有连接的时候调用 cleanupRunning = true; executor.execute(cleanupRunnable); } connections.add(connection); } }4.其实这个线程池中只有一个线程,是用来清理连接的,也就是上述的cleanupRunnable
private final Runnable cleanupRunnable = new Runnable() { @Override public void run() { while (true) { //执行清理,并返回下次需要清理的时间。 long waitNanos = cleanup(System.nanoTime()); if (waitNanos == -1) return; if (waitNanos > 0) { long waitMillis = waitNanos / 1000000L; waitNanos -= (waitMillis * 1000000L); synchronized (ConnectionPool.this) { //在timeout时间内释放锁 try { ConnectionPool.this.wait(waitMillis, (int) waitNanos); } catch (InterruptedException ignored) { } } } } } };这个runnable会不停的调用cleanup方法清理线程池,并返回下一次清理的时间间隔,然后进入wait等待。
怎么清理的呢?看看源码:
long cleanup(long now) { synchronized (this) { //遍历连接 for (Iterator<RealConnection> i = connections.iterator(); i.hasNext(); ) { RealConnection connection = i.next(); //检查连接是否是空闲状态, //不是,则inUseConnectionCount + 1 //是 ,则idleConnectionCount + 1 if (pruneAndGetAllocationCount(connection, now) > 0) { inUseConnectionCount++; continue; } idleConnectionCount++; // If the connection is ready to be evicted, we're done. long idleDurationNs = now - connection.idleAtNanos; if (idleDurationNs > longestIdleDurationNs) { longestIdleDurationNs = idleDurationNs; longestIdleConnection = connection; } } //如果超过keepAliveDurationNs或maxIdleConnections, //从双端队列connections中移除 if (longestIdleDurationNs >= this.keepAliveDurationNs || idleConnectionCount > this.maxIdleConnections) { connections.remove(longestIdleConnection); } else if (idleConnectionCount > 0) { //如果空闲连接次数>0,返回将要到期的时间 // A connection will be ready to evict soon. return keepAliveDurationNs - longestIdleDurationNs; } else if (inUseConnectionCount > 0) { // 连接依然在使用中,返回保持连接的周期5分钟 return keepAliveDurationNs; } else { // No connections, idle or in use. cleanupRunning = false; return -1; } } closeQuietly(longestIdleConnection.socket()); // Cleanup again immediately. return 0; }也就是当如果空闲连接maxIdleConnections超过5个或者keepalive时间大于5分钟,则将该连接清理掉。
这里有个问题,怎样属于空闲连接?
public void acquire(RealConnection connection, boolean reportedAcquired) { assert (Thread.holdsLock(connectionPool)); if (this.connection != null) throw new IllegalStateException(); this.connection = connection; this.reportedAcquired = reportedAcquired; connection.allocations.add(new StreamAllocationReference(this, callStackTrace)); }在RealConnection中,有一个StreamAllocation虚引用列表allocations。每创建一个连接,就会把连接对应的StreamAllocationReference添加进该列表中,如果连接关闭以后就将该对象移除。
5.连接池的工作就这么多,并不复杂,主要就是管理双端队列Deque<RealConnection>,可以用的连接就直接用,然后定期清理连接,同时通过对StreamAllocation的引用计数实现自动回收。
最后
连接池是为了解决频繁的进行建立Sokcet连接(TCP三次握手)和断开Socket(TCP四次分手)。Okhttp的连接池支持最大5个链路的keep-alive连接,并且默认keep-alive的时间是5分钟。连接池实现的类是RealConnectionPool,它负责存储与清除的工作,存储是通过ArrayDeque的双端队列存储,删除交给了线程池处理cleanupRunnable的任务。在每次创建RealConnection或从连接池中拿一次RealConnection会给RealConnection的 transmitters集合添加一个若引用的transmitter对象,添加它主要是为了后面判断该连接是否在使用中在连接池中找连接的时候会对比连接池中相同host的连接。如果在连接池中找不到连接的话,会创建连接,创建完后会存储到连接池中。在把连接放入连接池中时,会把清除操作的任务放入到线程池中执行,删除任务中会判断当前连接有没有在使用中,有没有正在使用通过RealConnection的transmitters集合的size是否为0来判断,如果不在使用中,找出空闲时间最长的连接,如果空闲时间最长的连接超过了keep-alive默认的5分钟或者空闲的连接数超过了最大的keep-alive连接数5个的话,会把存活时间最长的连接从连接池中删除。保证keep-alive的最大空闲时间和最大的连接数。问4:OkHttp里面用到了什么设计模式 责任链模式
可以说是okhttp的精髓所在了,主要体现就是拦截器的使用,具体代码可以看看上述的拦截器介绍。
建造者模式在Okhttp中,建造者模式也是用的挺多的,主要用处是将对象的创建与表示相分离,用Builder组装各项配置。
工厂模式工厂模式和建造者模式类似,区别就在于工厂模式侧重点在于对象的生成过程,而建造者模式主要是侧重对象的各个参数配置。
例子有CacheInterceptor拦截器中又个CacheStrategy对象:
CacheStrategy strategy = new CacheStrategy.Factory(now, chain.request(), cacheCandidate).get(); public Factory(long nowMillis, Request request, Response cacheResponse) { this.nowMillis = nowMillis; this.request = request; this.cacheResponse = cacheResponse; if (cacheResponse != null) { this.sentRequestMillis = cacheResponse.sentRequestAtMillis(); this.receivedResponseMillis = cacheResponse.receivedResponseAtMillis(); Headers headers = cacheResponse.headers(); for (int i = 0, size = headers.size(); i < size; i++) { String fieldName = headers.name(i); String value = headers.value(i); if ("Date".equalsIgnoreCase(fieldName)) { servedDate = HttpDate.parse(value); servedDateString = value; } else if ("Expires".equalsIgnoreCase(fieldName)) { expires = HttpDate.parse(value); } else if ("Last-Modified".equalsIgnoreCase(fieldName)) { lastModified = HttpDate.parse(value); lastModifiedString = value; } else if ("ETag".equalsIgnoreCase(fieldName)) { etag = value; } else if ("Age".equalsIgnoreCase(fieldName)) { ageSeconds = HttpHeaders.parseSeconds(value, -1); } } } } 观察者模式关于Okhttp中websocket的使用,由于webSocket属于长连接,所以需要进行监听,这里是用到了观察者模式:
final WebSocketListener listener; @Override public void onReadMessage(String text) throws IOException { listener.onMessage(this, text); } 单例模式每个项目都会有。
问5:论如何优雅地知道OkHttp的请求时间OkHttp如何进行各个请求环节的耗时统计呢?
OkHttp 版本提供了EventListener接口,可以让调用者接收一系列网络请求过程中的事件,例如DNS解析、TSL/SSL连接、Response接收等。通过继承此接口,调用者可以监视整个应用中网络请求次数、流量大小、耗时(比如dns解析时间,请求时间,响应时间等等)情况。
public abstract class EventListener { // 按照请求顺序回调 public void callStart(Call call) {} // 域名解析 public void dnsStart(Call call, String domainName) {} public void dnsEnd(Call call, String domainName, List<InetAddress> inetAddressList) {} // 释放当前Transmitter的RealConnection public void connectionReleased(Call call, Connection connection) {} public void connectionAcquired(call, result){}; // 开始连接 public void connectStart(call, route.socketAddress(), proxy){} // 请求 public void requestHeadersStart(@NotNull Call call){} public void requestHeadersEnd(@NotNull Call call, @NotNull Request request) {} // 响应 public void requestBodyStart(@NotNull Call call) {} public void requestBodyEnd(@NotNull Call call, long byteCount) {} // 结束 public void callEnd(Call call) {} // 失败 public void callFailed(Call call, IOException ioe) {} }请求开始结束监听
inal class RealCall implements Call { @Override public Response execute() throws IOException { eventListener.callStart(this); client.dispatcher().executed(this); Response result = getResponseWithInterceptorChain(); if (result == null) throw new IOException("Canceled"); return result; } @Override public void enqueue(Callback responseCallback) { eventListener.callStart(this); client.dispatcher().enqueue(new AsyncCall(responseCallback)); } }如何消耗记录时间
在OkHttp库中有一个EventListener类。该类是网络事件的侦听器。扩展这个类以监视应用程序的HTTP调用的数量、大小和持续时间。所有启动/连接/获取事件最终将接收到匹配的结束/释放事件,要么成功(非空参数),要么失败(非空可抛出)。
比如,可以在开始链接记录时间;dns开始,结束等方法解析记录时间,可以计算dns的解析时间。
比如,可以在开始请求记录时间,记录connectStart,connectEnd等方法时间,则可以计算出connect连接时间。
代码如下所示:
Eventlistener只适用于没有并发的情况,如果有多个请求并发执行我们需要使用Eventlistener. Factory来给每个请求创建一个Eventlistener。这个mRequestId是唯一值,可以选择使用AtomicInteger自增+1的方式设置id,这个使用了cas保证多线程条件下的原子性特性。
/** * <pre> * @author yangchong * email : yangchong211@163 * time : 2019/07/22 * desc : EventListener子类 * revise: * </pre> */ public class NetworkListener extends EventListener { private static final String TAG = "NetworkEventListener"; private static AtomicInteger mNextRequestId = new AtomicInteger(0); private String mRequestId ; public static Factory get(){ Factory factory = new Factory() { @NotNull @Override public EventListener create(@NotNull Call call) { return new NetworkListener(); } }; return factory; } @Override public void callStart(@NotNull Call call) { super.callStart(call); //mRequestId = mNextRequestId.getAndIncrement() + ""; //getAndAdd,在多线程下使用cas保证原子性 mRequestId = String.valueOf(mNextRequestId.getAndIncrement()); ToolLogUtils.i(TAG+"-------callStart---requestId-----"+mRequestId); saveEvent(NetworkTraceBean.CALL_START); saveUrl(call.request().url().toString()); } @Override public void dnsStart(@NotNull Call call, @NotNull String domainName) { super.dnsStart(call, domainName); ToolLogUtils.d(TAG, "dnsStart"); saveEvent(NetworkTraceBean.DNS_START); } @Override public void dnsEnd(@NotNull Call call, @NotNull String domainName, @NotNull List<InetAddress> inetAddressList) { super.dnsEnd(call, domainName, inetAddressList); ToolLogUtils.d(TAG, "dnsEnd"); saveEvent(NetworkTraceBean.DNS_END); } @Override public void connectStart(@NotNull Call call, @NotNull InetSocketAddress inetSocketAddress, @NotNull Proxy proxy) { super.connectStart(call, inetSocketAddress, proxy); ToolLogUtils.d(TAG, "connectStart"); saveEvent(NetworkTraceBean.CONNECT_START); } @Override public void secureConnectStart(@NotNull Call call) { super.secureConnectStart(call); ToolLogUtils.d(TAG, "secureConnectStart"); saveEvent(NetworkTraceBean.SECURE_CONNECT_START); } @Override public void secureConnectEnd(@NotNull Call call, @Nullable Handshake handshake) { super.secureConnectEnd(call, handshake); ToolLogUtils.d(TAG, "secureConnectEnd"); saveEvent(NetworkTraceBean.SECURE_CONNECT_END); } @Override public void connectEnd(@NotNull Call call, @NotNull InetSocketAddress inetSocketAddress, @NotNull Proxy proxy, @Nullable Protocol protocol) { super.connectEnd(call, inetSocketAddress, proxy, protocol); ToolLogUtils.d(TAG, "connectEnd"); saveEvent(NetworkTraceBean.CONNECT_END); } @Override public void connectFailed(@NotNull Call call, @NotNull InetSocketAddress inetSocketAddress, @NotNull Proxy proxy, @Nullable Protocol protocol, @NotNull IOException ioe) { super.connectFailed(call, inetSocketAddress, proxy, protocol, ioe); ToolLogUtils.d(TAG, "connectFailed"); } @Override public void requestHeadersStart(@NotNull Call call) { super.requestHeadersStart(call); ToolLogUtils.d(TAG, "requestHeadersStart"); saveEvent(NetworkTraceBean.REQUEST_HEADERS_START); } @Override public void requestHeadersEnd(@NotNull Call call, @NotNull Request request) { super.requestHeadersEnd(call, request); ToolLogUtils.d(TAG, "requestHeadersEnd"); saveEvent(NetworkTraceBean.REQUEST_HEADERS_END); } @Override public void requestBodyStart(@NotNull Call call) { super.requestBodyStart(call); ToolLogUtils.d(TAG, "requestBodyStart"); saveEvent(NetworkTraceBean.REQUEST_BODY_START); } @Override public void requestBodyEnd(@NotNull Call call, long byteCount) { super.requestBodyEnd(call, byteCount); ToolLogUtils.d(TAG, "requestBodyEnd"); saveEvent(NetworkTraceBean.REQUEST_BODY_END); } @Override public void responseHeadersStart(@NotNull Call call) { super.responseHeadersStart(call); ToolLogUtils.d(TAG, "responseHeadersStart"); saveEvent(NetworkTraceBean.RESPONSE_HEADERS_START); } @Override public void responseHeadersEnd(@NotNull Call call, @NotNull Response response) { super.responseHeadersEnd(call, response); ToolLogUtils.d(TAG, "responseHeadersEnd"); saveEvent(NetworkTraceBean.RESPONSE_HEADERS_END); } @Override public void responseBodyStart(@NotNull Call call) { super.responseBodyStart(call); ToolLogUtils.d(TAG, "responseBodyStart"); saveEvent(NetworkTraceBean.RESPONSE_BODY_START); } @Override public void responseBodyEnd(@NotNull Call call, long byteCount) { super.responseBodyEnd(call, byteCount); ToolLogUtils.d(TAG, "responseBodyEnd"); saveEvent(NetworkTraceBean.RESPONSE_BODY_END); } @Override public void callEnd(@NotNull Call call) { super.callEnd(call); ToolLogUtils.d(TAG, "callEnd"); saveEvent(NetworkTraceBean.CALL_END); generateTraceData(); NetWorkUtils.timeoutChecker(mRequestId); } @Override public void callFailed(@NotNull Call call, @NotNull IOException ioe) { super.callFailed(call, ioe); ToolLogUtils.d(TAG, "callFailed"); } private void generateTraceData(){ NetworkTraceBean traceModel = IDataPoolHandleImpl.getInstance().getNetworkTraceModel(mRequestId); Map<String, Long> eventsTimeMap = traceModel.getNetworkEventsMap(); Map<String, Long> traceList = traceModel.getTraceItemList(); traceList.put(NetworkTraceBean.TRACE_NAME_TOTAL,NetWorkUtils.getEventCostTime(eventsTimeMap,NetworkTraceBean.CALL_START, NetworkTraceBean.CALL_END)); traceList.put(NetworkTraceBean.TRACE_NAME_DNS,NetWorkUtils.getEventCostTime(eventsTimeMap,NetworkTraceBean.DNS_START, NetworkTraceBean.DNS_END)); traceList.put(NetworkTraceBean.TRACE_NAME_SECURE_CONNECT,NetWorkUtils.getEventCostTime(eventsTimeMap,NetworkTraceBean.SECURE_CONNECT_START, NetworkTraceBean.SECURE_CONNECT_END)); traceList.put(NetworkTraceBean.TRACE_NAME_CONNECT,NetWorkUtils.getEventCostTime(eventsTimeMap,NetworkTraceBean.CONNECT_START, NetworkTraceBean.CONNECT_END)); traceList.put(NetworkTraceBean.TRACE_NAME_REQUEST_HEADERS,NetWorkUtils.getEventCostTime(eventsTimeMap,NetworkTraceBean.REQUEST_HEADERS_START, NetworkTraceBean.REQUEST_HEADERS_END)); traceList.put(NetworkTraceBean.TRACE_NAME_REQUEST_BODY,NetWorkUtils.getEventCostTime(eventsTimeMap,NetworkTraceBean.REQUEST_BODY_START, NetworkTraceBean.REQUEST_BODY_END)); traceList.put(NetworkTraceBean.TRACE_NAME_RESPONSE_HEADERS,NetWorkUtils.getEventCostTime(eventsTimeMap,NetworkTraceBean.RESPONSE_HEADERS_START, NetworkTraceBean.RESPONSE_HEADERS_END)); traceList.put(NetworkTraceBean.TRACE_NAME_RESPONSE_BODY,NetWorkUtils.getEventCostTime(eventsTimeMap,NetworkTraceBean.RESPONSE_BODY_START, NetworkTraceBean.RESPONSE_BODY_END)); } private void saveEvent(String eventName){ NetworkTraceBean networkTraceModel = IDataPoolHandleImpl.getInstance().getNetworkTraceModel(mRequestId); Map<String, Long> networkEventsMap = networkTraceModel.getNetworkEventsMap(); networkEventsMap.put(eventName, SystemClock.elapsedRealtime()); } private void saveUrl(String url){ NetworkTraceBean networkTraceModel = IDataPoolHandleImpl.getInstance().getNetworkTraceModel(mRequestId); networkTraceModel.setUrl(url); } } 参考网络库OKHttp(1)流程+拦截器-CSDN博客
谈谈OKHttp的几道面试题 - 简书
面试官:Okhttp连接池是咋实现的? - 掘金
论如何优雅地知道OkHttp的请求时间
网络库OKHTTP(2)面试题由讯客互联创业栏目发布,感谢您对讯客互联的认可,以及对我们原创作品以及文章的青睐,非常欢迎各位朋友分享到个人网站或者朋友圈,但转载请说明文章出处“网络库OKHTTP(2)面试题”